Материнская ⚠️ плата: что это такое в компьютере, из чего состоит, какие основные компоненты

Материнская ⚠️ плата: что это такое в компьютере, из чего состоит, какие основные компоненты

Материнская ⚠️ плата: что это такое в компьютере, из чего состоит, какие основные компоненты

Компьютер

Автор Master На чтение 20 мин. Опубликовано 05.12.2022

Большому мозгу — большая память

Ближе всего к ЦП находятся те слоты, что содержат модули DRAM, или системную память. Они подключены напрямую к процессору и больше ни к чему. Количество слотов DRAM зависит в основном от ЦП, ведь контроллер памяти встроен именно в него.

В нашем примере ЦП в материнской плате имеет 2 контроллера памяти, каждый из которых оперирует 2 картами памяти, — всего 4 слота DRAM. На материнской плате они окрашены так, чтобы вы знали, какие из них каким контроллером управляются. Обычно их называют каналами памяти.

Впрочем, в случае этой материнской платы цветовая маркировка может сбивать с толку: два черных слота обрабатываются каждый своим контроллером, и то же самое для серых. Черному слоту, ближайшему к ЦП, соответствует первый канал, а другому черному слоту — второй.

Допустим, у вас есть два модуля ОЗУ по 8 ГБ каждый. Независимо от того, в какие слоты вы их вставите, у вас всегда будет в общей сложности 16 ГБ доступной памяти. Однако, если оба модуля поместить только в черные или только в серые слоты, ЦП будет иметь два пути доступа к этой памяти.

Но если поступить иначе и использовать слоты разных цветов, система будет вынуждена обращаться к памяти только с помощью одного контроллера памяти. Учитывая, что он может управлять только одним маршрутом за раз, нетрудно понять, как при этом изменится производительность.

При такой комбинации ЦП и материнской платы используются микросхемы DDR3 SDRAM (синхронная динамическая память с произвольным доступом с версией 3 двойной скорости передачи данных), и каждый слот может содержать один SIMM или DIMM. «IMM» обозначает X-рядный модуль памяти (In-line Memory Module); S и D указывают на то, заполнена ли чипами одна или две стороны модуля (Single или Dual, соответственно).

Вдоль нижнего края модуля памяти располагаются позолоченные разъемы для питания и обмена данными. Всего их у этого типа памяти 240 — по 120 с каждой стороны.

Одинарный модуль DIMM DDR3 SDRAM

Модули большего размера располагают большей памятью, но конфигурация имеет ограничения по контактам на ЦП (почти половина из 1150 контактов в этом примере предназначена для обмена данными с модулями памяти) и пространству для электрических дорожек на материнской плате.

Обычно производители придерживаются 240 контактов в модулях памяти, и нет никаких признаков того, что в ближайшее время это изменится. Чтобы улучшить производительность памяти, с каждой новой версией просто увеличивается скорость чипов. В нашем примере каждый из контроллеров памяти ЦП может отправлять и получать 64 бита данных за такт.

Каждый чип в DIMM (всего их 16 — по 8 на каждую сторону) может передавать 8 бит за такт. Это означает, что каждому чипу требуется 8 контактов только для передачи данных; однако пара чипов использует одни и те же выводы, поэтому только 64 из 240 отвечают за обмен данными.

Остальные 176 контактов необходимы для синхронизации и передачи адресов данных (места расположения данных в модуле), управления микросхемами и обеспечения их электроэнергией. Так вы можете убедиться, что наличие более 240 контактов не обязательно улучшит ситуацию.

Компьютерные шины

Все компоненты, которые размещаются на материнской плате соединяются специальными шлейфами (шинами). Компьютерная шина служит для передачи данных между отдельными функциональными блоками компьютера и представляет собой совокупность сигнальных линий, которые имеют определенные электрические характеристики и протоколы передачи информации.

Шины могут различаться разрядностью, способом передачи сигнала (последовательный или параллельный, синхронный или асинхронный), пропускной способностью, количеством и типами поддерживаемых устройств, протоколом работы, назначением (внутренняя или интерфейсная).

Шины делятся на три группы в зависимости от типа передаваемых данных:

  • Шина адрес (для адресации данных);
  • Шина данных (для обмена данными);
  • Шина управления (для управления данными).

Основные характеристики шины:

  1. Разрядность шины — величина, показывающая сколько бит данных можно пропустить шиной за один такт.
  2. Пропускная способность шины — показывает, сколько бит информации передается шиной за 1 секунду.

Системная шина (FSB-Front Sиde Bus) — шина, соединяющая CPU с другими устройствами через северный мост.

Шина Quad-Pumped Bus (QPB) — это 64-битная процессорная шина, обеспечивает связь процессором Intel с северным мостом чипсета. Характерной ее особенностью является передача четырех блоков данных (из двух блоков адресов) за такт. Таким образом, для частоты FSB, равной 200 МГц, эффективная частота передачи данных будет эквивалентна 800 МГц (4х200 МГц).

Шина HyperTransport (HT) — последовательная двунаправленная шина, разработанная консорциумом компаний во главе с AMD и служит для связи процессоров AMD семейства К8 друг с другом, а также с чипсетом. Кроме того, многие современные чипсетов используют НТ для связи между мостами.

Данная шина НТ нашла место и в высокопроизводительных сетевых устройствах — маршрутизаторах и коммутаторах. Характерной чертой шины НТ является ее организация по схеме Peer-to-Peer (точка-точка), что обеспечивает высокую скорость обмена данными при низкой латентности.

Корпус

Все комплектующие устанавливаются в корпус, который выполняет роль одновременно и защитной оболочки, и «шасси», куда крепятся детали. Чаще всего современные корпуса сделаны из металла и пластика, а с недавних пор стали набирать популярность корпуса с использованием в них стеклянных боковых панелей.

Чтобы системный блок получал холодный воздух и мог выдувать горячий, корпус оснащается «секциями» под вентиляторы – чаще всего вентиляторами оснащают переднюю и заднюю стенку, но есть модели, в которых место под вентиляторы выделяется на верхней крышке. Долгая эксплуатация внутренних устройств без обращения в ремонт во многом зависит от правильной организации охлаждения.

Читать статью  Где находится материнская плата в компьютере и в ноутбуке

Разделить корпуса можно как по размеру, так и по ряду внутренних особенностей: расположение блока питания – сверху или снизу – или количество разъёмов под жёсткие диски или дисководы и т.д.

На данный момент популярными остаются корпуса вертикального типа и трёх следующих размеров:

Вид корпуса Описание
FullTower (ATX) Самый крупный из представленных видов корпуса. Обладает большим количеством разъёмов под дисководы, жёсткие диски и SSD, можно расположить полноразмерную материнскую плату ATX. Хороший выбор для мощных компьютеров, где используется большое количество разных комплектующих.
MiddleTower (MicroATX) Корпус среднего размера, обладает меньшим количеством разъёмов, позволяет установить материнскую плату MicroATX. Отлично подходит для домашних и офисных ПК
SFF (Mini-ITX) Самый маленький из представленных видов корпуса. В силу малых размеров может не обладать разъёмами под дисковод и требует блок питания очень маленьких размеров. Можно установить только плату Mini-ITX.
Лучше всего себя проявит в сборках для офисной работы или домашнего кинотеатра.

Материнская плата

Ключевой деталью, от которой зависит, как будет работать компьютер, является материнская плата, в простонародье именуемая как «материнка» или вовсе «мать». Без неё прочие комплектующие абсолютно бесполезны – в системном блоке материнская плата выступает в роли дирижёра.

Располагается она в системном блоке параллельно крышке корпуса, поскольку чаще всего это самая большая деталь в компьютере, к которой впоследствии подключаются другие. Существует огромное количество различий между материнскими платами – от производителя и до количества разъёмом под ОЗУ, но ключевыми же считаются сокет процессора и форм-фактор платы.

Сокет – это название для разъёма под установку процессора (или ЦП). Если разделить материнские платы зависимо от марки ЦП, то можно заметить, что есть всего два разных вида – для процессоров от AMD и Intel. Разделение происходит по причине различий в способе установки – у AMD контактные ножки расположены на самом процессоре, в отличие от Intel, у которой ножки расположены на самом сокет.

Форм-фактор платы – это её габариты и количество разъёмов под различные устройства. Наибольший спрос остаётся за форм-факторами ATX, Micro-ATX и Mini-ITX, которые существенно различаются как по размерам и оснащению, так и по назначению:

Форм-фактор Описание
ATX Самый крупный из представленных форм-факторов, размер платы – 30,5/24,4 сантиметра. Большая площадь позволяет размещать на плате множество разъёмов самых разных видов – под ОЗУ, платы расширения, накопители. Хорошо подходят для домашних ПК.
Micro-ATX Немного меньше предыдущего форм-фактора – 24,4/24,4 сантиметра. Небольшое количество разъёмов компенсируется малыми размерами. Хорошо подходят тем, кому необходим компактный ПК.
Mini-ITX Самый маленький из представленных форм-факторов – 17/17 сантиметров. Обычно обладают самым минимумом разъёмов, без которых нельзя обеспечить нормальную работу системы. Стоит обращать внимание при сборке мультимедийного ПК.

Микросхема bios

Большинство пользователей знакомы с BIOS. Однако если вы впервые слышите о таком понятии, рекомендуем ознакомиться с другим нашим материалом по этой теме, который вы найдете по следующей ссылке.

Подробнее: Что такое BIOS

Код БИОС располагается на отдельной микросхеме, что крепится на материнскую плату. Она носит название EEPROM. Память такого типа поддерживает многоразовое стирание и запись данных, однако имеет достаточно маленькую емкость. На скриншоте ниже вы видите, как выглядит микросхема BIOS на материнке.

Микросхема BIOS на материнской плате компьютера

Кроме этого значения параметров BIOS хранятся в микросхеме динамической памяти, которая называется CMOS. В нее также записываются определенные конфигурации компьютера. Питается данный элемент через отдельную батарейку, замена которой приводит к сбросу настроек БИОС до заводских.

Батарейка питания на материнской плате компьютера

Планки оперативной памяти

Как уже понятно из названия, планки эти отвечают за объем оперативной памяти компьютера. Чем планок больше и чем большего они объема, тем больше у компьютера оперативной памяти.

Основная характеристика планок оперативной памяти — диапазон частот, на которых они могут работать. Еще учитывается объем каждой планки оперативной памяти.

В компьютер рекомендуется всегда устанавливать планки оперативной памяти одинакового объема и от отдого производителя, во избежание различных системных конфликтов. Устанавливаются планки в специальные слоты на материнской плате.

Может быть вам интересно: Оперативная память: виды, увеличение, диагностика

Неотъемлемая часть любого компьютера. Отвечает за вывод на монитор пользователя изображения. Отвечает за качество компьютерной графики и производительность 3D приложений в целом.

Существуют как внешние видеокарты, так и внутренние, встроенные в материнскую плату либо в процессор. Однако на большинстве домашних ПК видеокарта внешняя.

Может быть вам интересно: Рейтинг лучших видеокарт 2021 года

Современная внешняя видеокарта отличается от своих прародителей большим количеством кулеров и массивной радиаторной решеткой. Все это нужно для улучшения охлаждения карты и, как следствие, повышения ее производительности.

Основными параметрами видеокарты являются объем ее видеопамяти и диапазон частот, на которых видеокарта работает.

Может быть вам интересно: Лучшие бюджетные видеокарты

Разъемы материнских плат

По всему периметру платы находится большое количество специальных разъемов в виде слотов. Они предназначены для подключения плат расширения.

Разъема PCI — долгое время были стандартом для подключения аудио-, звуковых- и сетевых карт, TV-тюнера, Wi-Fi-адаптера. Однако впоследствии появились новые и более быстрые шины PCIе. На сегодняшний день некоторые материнские платы поддерживают оба этих интерфейса, но поддержка PCI встречается все реже.

alt

Для жестких дисков и DVD / CD приводов предназначены разъемы SATA и PATA (ATA (IDE)). Их легко отличить по внешнему виду (SATA — маленький, РATA — широкий, многоконтактный), как на самом устройстве, так и на материнской плате. Несмотря на новый стандарт (SATA), некоторые материнские платы все еще оснащаются старым интерфейсом ATA (IDE). Но вероятно со временем его поддержка прекратится полностью учитывая неактуальность.

Оперативная память используется процессором для кратковременного хранения информации во время выполнения им различных операций. Чем больше программ одновременно открыто и обрабатывается процессором, тем больше оперативной памяти для этого используется.

Для оперативной памяти существуют отдельные разъемы. В результате ее развития и усовершенствований существует несколько типов памяти: DDR1, DDR2, DDR3, DDR4. Чем больше цифра-окончание, тем более продуктивной является память.

Читать статью  Как узнать материнскую плату на ноутбуке: все способы

Каждая из них имеет свой разъем для подключения, а соответственно каждая материнская плата рассчитана на поддержку только одного ее типа. То есть каждый тип памяти не являются взаимозаменяемыми. На рисунке приведены различия в расположении зазоров в разъемах различных типов оперативной памяти.

alt

И последний рассмотренный нами разъем используется для подключения блока питания к материнской плате. Этот разъем практически не изменился со времен появления первой ATX материнской платы. К нему лишь добавили несколько контактов для подачи дополнительного питания к современным мощным процессорам.

alt

Сокеты

Для закрепления процессора на материнской плате существует специальный разъем центрального процессора (форм-фактор) — сокет (Socket) — гнездовой разъем с различным количеством и типом контактов, предназначенный для установки в него центрального процессора.

alt

В зависимости от модели материнской платы разъемы сокетов могут отличаться, из-за чего не каждый тип процессора к ним подойдет. Старые разъемы для процессоров x86 нумерованных в порядке выпуска, обычно одной цифрой (Socket 1-8). Более поздние разъемы обычно обозначались номерами с соответствующим количеством пинов (ножек)

процессора (Socket 370-479). Сокеты различаются по размеру, количеству ножек, их виду, например, у производителя процессоров AMD ножки находятся в самом процессоре, а у того же Intel с сокетом 775, ножек на процессоре нет, а находятся они в самом сокете.

Еще стоит заметить, что до определенного сокета подходит только определенный вид процессоров, как по производителю, так и по модели процессора. Но бывают исключения. Например, в сокет LGA775 подходит, как процессор Intel Core 2 Duo так и Intel Core Quad.

Современные процессоры используют следующие разъемы:

alt

  • Socket B (LGA 1366) — выполнен в 1366 контактной форме, поддерживает процессоры Core i7 серии 9хх, Xeon серии 35хх по 56хх, Celeron P1053. Скоростные характеристики от 1600 МГц до 3500МГц.
  • Socket Н (LGA 1156) — выполнен с использованием 1156-и выступающих контактов. Процессоры — Core i7, i5, i3, гибридные процессоры (CPU GPU). Скоростные характеристики от 2,1ГГц и выше. Ему на смену приходит Socket Н2 (LGA 1155), который поддерживает процессоры Sandy Bridge и Ivy Bridge. Разъем выполнен из 1155 контактов. Выпускается с 2022 года. Скоростные характеристики до 20 ГБ/с.
  • Socket R (LGA 2022) — разработан на замену LGA 1366. Разъем выполнен с использованием 2022 контактов. Поддерживает процессор Sandy Bridge серии Е. Скоростные характеристики от 19 ГБ / с до 25.6 ГБ / с.
  • Socket H3 (LGA 1150) — разъем для процессоров Intel Haswell, разработанный для замены LGA 1155 (Socket H2). LGA 1150 подходит для процессоров серий Intel Haswell и Broadwell.

Серверные сокеты Intel:

  • Socket TW (LGA 1248) — процессоры Itanium, Socket LS
  • (LGA 1567) — процессоры — Xeon серии 75хх и 76хх. Скоростные характеристики от 19 ГБ / с до 25.6 ГБ / с.

AMD.

alt

  • Socket AM2 идентичен Socket AM2 отличие заключается лишь в поддержке процессоров на ядрах Agena, Toliman.
  • Socket AM3 процессоры — AMD Phenom II X4 910, 810, 805 и AMD Phenom II X3 720 и 710.
  • Socket FM1 — ​​разъем для процессоров Llano.
  • Socket FM2 — для процессоров Komodo, Trinity, Terrama, Sepang.

К основным параметрам, которые влияют на производительность процессору относят:

  • Тактовая частота;
  • Частота системной шины;
  • Кэш-память;
  • Количество ядер.

Тактовая частота — тактом мы можем условно назвать одну операцию. Единица измерения МГц и ГГц (мегагерц (106 ) и гигагерц (109 )). 1 МГц — означает, что процессор может выполнить 106 операций в секунду.

Частота системной шины — пропускная способность шины, которая связывает процессор с чипсетом. Системная шина — это определенная совокупность сигнальных линий, которые связывают процессор с другими компонентами системного блока.

У процессоров Intel, ранее была распространена шина FSB, но в новых моделях процессоров она была заменена на шину QPI, которая работает на частотах свыше 1333 МГц. В процессорах AMD системной шиной служит шина Hyper Transport. Частота этой шины более 1600 МГц.

Кэш — это сверхбыстрая память, которая позволяет процессору быстро получить доступ к определенным данным, которые часто используются, загружаемых из оперативной памяти. Кэш современных процессоров значительно повышает их производительность.

Различают кэш 1, 2, 3-го уровней:

  • Кэш первого уровня является самым быстрым, но при этом его размер очень ограничен. Он работает на частоте процессора, и, в общем случае, обращение к нему может проводиться каждый такт. Чаще всего является возможность выполнения нескольких операций чтения / записи одновременно. Латентность (задержка) доступа обычно равна 2-4 тактам ядра. Объем обычно невелик, не более 384 Кбайт;
  • Кэш второго уровня чуть медленнее, но при этом чуть больше по объему (от 128 Кбайт до 1-12 Мбайт)
  • Кэш третьего уровня чуть медленнее кэша первого и второго уровней, но все равно значительно быстрее оперативной памяти. Размер кэша третьего уровня достигает 12-24 Мбайт.

Ограниченность объема кэш-памяти объясняется ее высокой себестоимостью из-за сложного процесса производства.

Состав системного блока

Системный блок (или многими ошибочно называемый «процессор») – это самая важная часть компьютера, без которой, собственно, его не может и быть.

Строение системного блока может быть представлено в следующем виде: материнская плата, в которую устанавливаются ЦП с системой охлаждения, видеокарта, планки оперативной памяти и дополнительные платы расширения, вроде звуковых или сетевых карт. Также к материнской плате подключаются накопители двух типов: жёсткие диски (HDD – Hard Disk Drive) и высокоскоростные твердотельные накопители (SSD – Solid-State Drive).

Чтобы обеспечить сопряжение накопителей и материнской платы, применяются кабели. А подпитывается вся эта система благодаря блоку питания, который обеспечивает бесперебойную подачу тока ко всем деталям. Стоит отметить, что в это описание включено всё основное оборудование системного блока – остальные элементы, вроде тех же карт расширения или дополнительных вентиляторов, каждый пользователь уже ставит сам.

Читать статью  Как узнать материнскую плату на компьютере

Будет совершенно нелишним подключить к системному блоку предохранитель в виде источника бесперебойного питания, или ИБП. Его главное преимущество в том, что он позволит выиграть несколько минут работы компьютера в случае, если пропадёт подача тока из розетки – за это время можно успеть сохранить результат работы и спокойно отключить компьютер.

Исходя из этого перечня комплектующих, можно сделать вывод, что все запчасти системного блока обладают разным назначением, но главным остаётся то, что без них персональный компьютер не может нормально работать.

Важно также понимать, что системный блок не является устройством ввода или вывода: их роль выполняют внешние устройства (или периферийные) – ими выступают, например, клавиатура или мышь для ввода и монитор для вывода.

Вопрос: «находится ли флеш-память, плоттер, трекбол, сканер в системном блоке?»

Ответ: нет, потому что:

  1. Флеш-память, по сути, это флеш-карты памяти, содержимое которых спокойно читается через картридер – устройство, которое как раз находится в системном блоке;
  2. Плоттер – это специальный принтер для печати на бумаге размером A1 или A0. В силу своих размеров, в системный блок он поместиться не может;
  3. Трекбол – это устройство ввода, и находясь внутри системного блока, пользователь не сможет подавать команды компьютеру;
  4. Сканер – это внешнее устройство, подключаемое к системному блоку.
  5. В этой статье про то, как устроен компьютер вы поймете, почему все эти перечисленные устройства никак не входят в состав системного блока.
  6. О подключении этих устройств к системному блоку мы поговорим в цикле статей, разобравшись с внешними разъёмами системного блока .

Технологический процесс

Технологический процесс (техпроцесс) в 1979 г. составлял 3 мкм, но впоследствии (после 2002 г.) достиг нанометровых размеров — 90-32 нм (1нм=10-9 м). Уменьшение техпроцесса приводит к увеличению количества электронных компонент (транзисторов) на кристалле, а за счет их малых размеров, уменьшается энергопотребление системы.

Сегодня уже не совсем выполняется закон Мура, который в 1965г. отметил, что каждые два года количество транзисторов на кристалле будет увеличиваться вдвое. Проблемы при создании нового техпроцесса связанные с методами получения миниатюрных компонент, сохранением свойств материала (мешает проявление «размерных эффектов» — когда материал вследствие своих малых геометрических размеров меняет физические свойства), поиском новых наноматериалов, отводом тепла, дополнительными наводкам, шумами.

В 2022 компания Intel объявила о выходе первой волны процессоров нового поколения под названием Ivy Bridge. В первую партию вошли 13 четырехъядерных чипов, выполненных по нормам 22-нм технологического процесса с трехмерными транзисторами Tri-Gate. Новинки распределились между линейками Core i5 и i7.

Поколение процессоров отличаются друг от друга скоростью работы, архитектурой, исполнением и внешним видом. Причем отличаются не только количественно, но и качественно. Так, при переходе от Pentium к Pentium II и затем — к Pentium III (IV) была значительно расширена система команд (инструкций) процессора, увеличено количество транзисторов и т.д.

Если рассмотреть корпорацию Intel, то за всю 32-летнюю историю процессоров этой фирмы сменилось 12 поколений: 8088, 286, 386, 486, Pentium, Pentium II — Pentium III, Pentium 4, Core 2 Duo, Core i3, Core i5, Core i7 . В каждом поколении есть модификации, отличающиеся друг от друга назначением и ценой.

Например, в семействе Pentium IV числились три вида — старший, Хеоn, работает в серверах. Средний, собственно Pentium IV, используется в настольных компьютерах и дешевый Celeron — в бюджетных компьютерах. Уменьшение цены достигается урезанием кэша второго уровня в два раза, понижением частоты работы системной шины.

Похожая ситуация и в семействе процессоров AMD. Для дорогих настольных компьютеров Phenom, Athlon, а для недорогих домашних ПК — Sempron. В пределах одного поколения и модификации все ясно: чем больше тактовая частота, тем быстрее процессор.

Чипсет. северный и южный мосты

Чипсет (ChipSet — набор микросхем) — основа материнской платы, представляет собой одну или несколько микросхем, специально разработанных для обеспечения взаимодействия центрального процессора (CPU — Central Processing Unit) со всеми другими компонентами компьютера.

Чипсет определяет, какой процессор может работать на данной материнской плате, тип, организацию и максимальный объем используемой оперативной памяти (некоторые современные модели процессоров имеют встроенные контроллеры памяти), сколько и какие внешние устройства можно подключить к компьютеру.

Разработкой чипсетов для материнских плат занимаются компании: Intel, NVIDIА, AMD, VIА и SIS.

Чаще всего чипсет состоит из 2 интегральных микросхем, называемых северным и южным мостами. В процессе эволюции компьютерной схемотехники разработчики пришли к следующей структуре: процессор, затем идет связующее звено или «мост», обеспечивающий работу процессора с оперативной памятью (RAM)

Характерной особенностью северного моста является высокая (по сравнению с южным мостом) скорость обработки данных и обеспечения выполнения большинства вычислений самим процессором. Поэтому на нем смонтировано дополнительное охлаждение: пассивный радиатор или радиатор с активным охлаждением в виде небольшого вентилятора.

Южный мост контролирует работу более медленных устройств, подключение которых происходит с использованием интерфейсов IDE, SATA, USB, LAN, Embeded Audio, PCI, PCIe, обеспечивая возможность передачи из них информации к северному мосту. Южный мост также обеспечивает нормальную работу микросхемы BIOS.

Ранее связь северного и южного мостов выполнялся путем интерфейса PCI на смену которой пришла шина Direct Media Interface (DMI) — последовательная шина, разработанная фирмой Intel для соединения южного моста с северным. Впервые DMI использована в чипсетах семейства Intel 915 с южным мостом ICH6 в 2004 году.

Пропускная способность шины DMI первого поколения составляет 2 ГБ/сек, что значительно выше, чем пропускная способность шины Hub Link (266 МБ/сек) (пришла на смену PCI), которая используется для связи между северным и южным мостами в чипсетах Intel 815/845/848/850/865/875.

В материнских платах для процессоров с разъемом LGA 1155 (то есть для Core i3, Core i5 и некоторых серий Core i7 и Xeon) и со встроенным контроллером памяти, DMI используется для подключения чипсета (PCH) непосредственно к процессору. (Серверные процессоры серии Core i7 для LGA 1366 подсоединяются к чипсета через шину QPI).

https://overcomp.ru/materinskaya-plata-chto-eto-takoe-v-kompyutere-iz-chego-sostoit-kakie-osnovnye-komponenty/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *